Increasing Precision in Agronomic Field Trials Using the Latin Square Design

Richard Woodward, PhD Director International, Stoller USA, Inc.

Overview

- Research strategies and principles of design
- The Randomized Complete Block Design (RCBD)
- Sources of variation in the field
- Features of Latin Square Design
- Relative Efficiency RCBD vs LS

4 (13%)

12

(40%)

14

(47%)

 Case study of 30 Midwest trials designed as LS but ANOVA as RCBD and as LS

No gradient

1-way gradient

2-way gradient

Research Strategies for Product Development

Integrative Research On-Farm Trials

E + T + M

Environment x Treatment x Management

Adaptive Research On-Station Studies

E + T Environment x Treatment

Developmental Research Small-Plot Studies

> Basic Research Lab Studies

Treatment

Fundamental Principles

Scope of Inference

Number of Treatments

Explanation of Statistical and Experimental Design Terms

Term	Definition
Experimental Design	the set of rules and procedures by which the treatments are assigned to experimental units
Experimental Unit	the smallest unit to which a treatment is applied
Block	a group of (presumably) homogeneous experimental units (a complete block contains all treatments)
Replication	the practice of applying each treatment to multiple and mutually independent experimental units
Randomization	the practice of assigning treatments to experimental units such that each unit is equally likely to receive each treatment
Experimental Error	the variance among experimental units treated alike, often symbolized as σ^2 or σ_e^{-2} .
Precision	the inverse of experimental error, 1/ $\sigma_{e}^{\ 2}$

Esc

van

Sellmann^b

M.

C.P. Gomes^{b,c}.

H.M. van Es^{a,*}

RCBD used in 96.7% of all known trial designs in Agron. J from 2001-2003

Characterization of designs used in field-based experiments reported in Agronomy Journal volumes 93 through 95

Design type	Frequency	Mean	
		# of treatments	# of replicates
Randomized Complete Block	300	8.0	3.8
Completely Randomized	4	17.3	14.7
Randomized Incomplete Block	3	43.6	3.7
Split Block	2	4.0	4.5
Latin Square	1	4	4
Field strips — unknown design	9	4.6	3.2
Split plot — with unknown main-plot arrangement	42	NA	NA
Other	53	NA	NA
Total	414		

Principles of Experimental Design

Randomized Complete Block Design

Each set of treatments occurs once in each replication Blocks should be perpendicular to the gradient variable

Randomized Complete Block Design Linear Additive Model

$$\mathbf{Y}_{ij} = \boldsymbol{\mu} + \mathbf{B}_{i} + \mathbf{T}_{j} + \boldsymbol{\varepsilon}_{(ij)}$$

Where:

- Y_{ij} = observation from the ijth experimental unit [dependent variable]
- μ = overall mean
- **B**_i = effect of the ith block
- T_i = effect of the jth treatment
- $\varepsilon_{(ij)}$ = residual error

Randomized complete block design with 6 replications. Error bars represent standard error of the mean.

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F value	Prob > F
Rep	5	362.9	72.575	0.5124	0.7643
Treatment	5	389.6	77.919	0.5501	0.7367
Error	25	3540.9	141.637	-	-

Treatment

How does this happen?

Casler, M.D. 2013. Fundamentals of Experimental Design: Guidelines for Designing Successful Experiments. Agron. J. 105:1-14.

- 1. A poorly designed experiment with insufficient power to detect differences between treatment means.
- 2. Poorly designed treatments that didn't reflect the initial hypothesis; positive controls / negative controls.
- 3. An improperly conducted experiment without proper oversight over treatment and data collection.
- 4. Lack of true differences between the treatment means.

Principles of Blocking

Textbook

 Plot-to-plot variation within blocks is smaller than block-to-block variation

Assumption

• Prior knowledge of site variation is required

- Variation follows a gradient
- Blocks are oriented perpendicular to a gradient

Ground view of 30 inch row-spaced corn. While you can see the plants, soil shows through the crop.

Photo courtesy of the Iowa Soybean Association

Aerial view of the same field taken on the same day. Notice how you see mostly soil differences compared to plant differences.

Tile Lines Visible within a Field

Photo courtesy of the Iowa Soybean Association

Equipment Patterns

Photo courtesy of the Iowa Soybean Association

Anhydrous Ammonia Skips

Uneven Distribution of Residue

Photo courtesy of the Iowa Soybean Association

Features of Latin Square Design

 Reduce experimental error by blocking on two perpendicular sources of variation [simultaneously capture two sources of nuisance variability]

- Each treatment appears only once in each row and each column
- Treatments = Replications [4 x 4, 5 x 5, 6 x 6]
- Low degrees of freedom for small squares

В С Α D Gradient (i) B С D Α B C D Α Α B D C

Gradient (j)

Latin Square Design Linear Additive Model

$$\mathbf{Y}_{ijk} = \boldsymbol{\mu} + \mathbf{R}_i + \mathbf{C}_j + \mathbf{T}_k + \boldsymbol{\varepsilon}_{(ijk)}$$

Where:

- Y_{ijk} = variable to be analyzed from ith row and jth column and the kth treatment [dependent variable]
- μ = overall mean
- R_i = effect of the ith row
- C_i = effect of the jth column
- T_k = effect of the kth treatment

 $\varepsilon_{(ijk)}$ = residual error

Original Example

Randomized complete block design with 6 replications. Error bars represent standard error of the mean.

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F value	Prob > F
Rep	5	362.9	72.575	0.5124	0.7643
Treatment	5	389.6	77.919	0.5501	0.7367
Error	25	3540.9	141.637	-	-
50 45 40 35 30 25	35.0	 2.0 35.1	41.5	40.1	38.6

25

20

Product 1 Product 2 Product 3 Product 4 Product 5 Control Treatment

Yield Charted by Rows & Columns

StollerUSA

Rows as block

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F value	Prob > F
Rows	5	362.9	72.575	0.5124	0.7643
Treatment	5	389.6	77.919	0.5501	0.7367
Error	25	3540.9	141.637	-	-

Columns as block

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F value	Prob > F
Columns	5	2896.8	579.37	14.3842	1.122e-06
Treatment	5	389.6	77.91	1.9345	0.1242
Error	25	1007.0	40.28	-	-

Rows and Columns as blocks

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F value	Prob > F
Rows	5	362.88	72.58	2.2536	0.08856
Columns	5	2896.85	579.37	17.9906	8.578e-07
Treatment	5	389.60	77.92	2.4195	0.07181
Error	20	644.08	32.20	-	-

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F value	Prob > F
Rows	5	362.88	72.58	2.2536	0.08856
Columns	5	2896.85	579.37	17.9906	8.578e-07
Treatment	5	389.60	77.92	2.4195	0.07181
Error	20	644.08	32.20	-	-
50 45 40 35 30 25 20	35.0 32	* 35.1	* 41.5	40.1	* 38.6
Co	ontrol Prod	uct 1 Produ	ct 2 Product	3 Product 4	Product 5
		-	reatment		

Relative Efficiency Compared to RCBD

Robert O. Kuehl, 2000, Design of Experiments: Statistical Principles of Research Design and Analysis, 2nd Edition.

- To compare with a RCBD using rows as the blocks $RE = \frac{MSROWS + (t-1)MSE}{t}$
- To compare with a RCBD using columns as the blocks $RE = \frac{MS \ Columns + (t-1)MSE}{t}$

MS = Mean Square MSE = Mean Square Error t = treatments

Relative Efficiency compared to RCBD

• To compare with a RCBD using rows as the blocks RE = 3.76 gain by adding columns

• To compare with a RCBD using columns as the blocks RE = 1.18 gain by adding rows

Research Objective

- Hypothesis
 - Soil heterogeneity is more prevalent than is apparent.
- Objective
 - Evaluate the use of a Latin Square design to control soil heterogeneity and compare the relative efficiency versus the RCBD.

Latin Square Case Study 30 total squares

- Corn 12
- Sorghum 3
- Soybean 15

18 locations

10 States

2 Cooperator Types

- 18 Land Grant Univ.
- 12 Private Contractor

Presence of gradients exhibited in 30 Latin Square trials conducted across 18 locations in 10 states across the upper Midwest. Only four of the trials (13) did not exhibit a significant gradient indicating blocking is a sound practice to help control field variation

Presence of gradients exhibited in 30 Latin Square trials conducted across 18 locations in 10 states across the upper Midwest. Fourteen of the trials (47%) exhibited two way variation and the precision was increased (lower MSE) by using the Latin Square design.

Of the 12 trials that exhibited one-way variation, the precision was increased (lower MSE) in 7 of those instances regardless of the blocking direction chosen. The precision was increased in 70% (21/30) trials by using the Latin Square design.

Of the 5/12 remaining trials exhibiting one-way variation, the use of the RCBD would only have more precision if the proper blocking direction is chosen. Otherwise the design would be less efficient.

Interpretation and Conclusions

- Multiple gradients are prevalent in field trials.
- Blocking in a single direction will only increase precision if the variation is successfully captured within those blocks.
- The Latin Square increased precision in over 2/3 of trials evaluated.
 - Efficiency is not sacrificed in single gradient systems
 - The number of treatments is restricted to equal the number of replicates: 4 x 4, 5 x 5, 6 x 6

Recall

- Research strategies and principles of design
- The Randomized Complete Block Design (RCBD)
- Sources of variation in the field
- Features of Latin Square Design
- Relative Efficiency RCBD vs LS

4 (13%)

12

(40%)

14

(47%)

 Case study of 30 Midwest trials designed as LS but ANOVA as RCBD and as LS

No gradient

1-way gradient

2-way gradient

References and Citations

Van Es et al **2007 Spatially-Balanced Complete Block Designs for Field Experiments**. Geoderma 140 (2007):346-352

Jones, M, R. Woodward, and J. Stoller 2015. Increasing Precision in Agronomic Field Trials Using Latin Square Designs. Agron. J. 107:20–24 (2015) doi:10.2134/agronj14.0232

- Cited by:
 - Piepho et al 2015. Beyond Latin Squares: A Brief Tour of Row-Column Designs. Agronomy journal Vol. 107 No. 6, p. 2263-2270 doi:10.2134/agronj15.0144
 - Freeman, G. H. and Williams, E. R. 2016. Row and Column Designs. Wiley StatsRef: Statistics Reference Online. 1–4. Published Online: 17 MAY 2016, DOI: 10.1002/9781118445112.stat00893.pub2 http://onlinelibrary.wiley.com/book/10.1002/9781118445112
 - Piepho, H., Williams, E.R. & Michel, V. 2016. Non-resolvable Row–Column Designs with an Even Distribution of Treatment Replications. JABES 21: 227 doi:10.1007/s13253-015-0241-2

